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A B S T R A C T

In the western United States, meltwater from mountain snowpacks serves as the dominant water supply for many
communities. Efficient distribution and use of this renewable, yet temporally and spatially variable resource
relies critically on accurate forecasting of future water availability. Here we report on initial efforts to use
Interactive Multisensor Snow and Ice Mapping System (IMS) data on snow coverage to forecast flow in six
selected watersheds within the Columbia River Basin. Little research has been done on identifying the re-
lationship between seasonal discharge volume and these satellite-derived snow cover data. In the Yakima wa-
tershed within the Columbia River Basin, we could explain 52% of the spring discharge (April – July total
streamflow volume) variance by selecting specific 24-km grid cells that exhibit both strong correlation with
historical flows as well as high inter-annual variation. This approach yielded reasonable success in other wa-
tersheds. Of the six Columbia River subbasins examined in this paper, five of them give statistically significant
predictors of April – July streamflow volume at the α=0.05 level. When comparing this optimized specific-cell
technique to the overall average across the entire watershed of interest, we observe improvements in each of our
six subbasins, although in some regions, improvements were minimal. Clearly, this optimization technique is
inherently limited by the role of snow cover variation in determining streamflow discharges in different sub-
basins. For both mountainous regions with extensive and stable snow cover as well as low-elevation regions with
consistently minimal snow, the snow cover variation only accounts for a small inter-annual streamflow discharge
variance. Our methodology shows that the IMS provides remotely-sensed data that are ready to “plug and play”
into existing streamflow forecast models such as the Natural Resources Conservation Service's (NRCS) Visual
Interactive Prediction and Estimation Routines (VIPER).

1. Introduction

As is true in much of the Pacific Northwest, snowpacks constitute a
persistent central concern for people living in the Columbia River Basin
(CRB). Meltwaters from these snowpacks provide the source water for
the streams and rivers that drain throughout the basin, supplying the
majority of water upon which the entire population relies (McCabe and
Clark, 2005; Serreze et al., 1999). While these snowpacks are essential
resources, they also constitute potential threats. In years of sparse snow
accumulation, low-flow conditions can fall short of the region's water
needs. By contrast, in years of ample accumulation, or during high rates
of snow melt, high river flows can spur dangerous surges, flooding
population centers, threatening lives, and destroying property
(O’Connor and Costa, 2000; Historical High Water Events, 2014). Im-
pacts of these extremes and the more common subtle inter-annual

variations are of importance not just to public safety, but to irrigation,
potable water, hydroelectric generation and, indeed, the overall
economy of the Pacific Northwest (Mote, 2003). Hence, accurate
streamflow predictions are a top priority in this region.

Snow cover plays a key role in the hydrologic cycle by acting as the
frozen storage term in the water balance (Derksen and LeDrew, 2000).
Thus, snow ablation is a major contributor to streamflow, soil moisture,
and groundwater supplies. Every river basin has its own snow-ablation
characteristics and melt-discharge relationships, with the Columbia
River Basin and its subbasins (Fig. 1) being no exception. In this region,
where snow cover can be deep and water-laden in the mountains, intra-
seasonally ephemeral elsewhere, and where discharge exhibits notable
inter-annual variability due to melt timing and snow-water content,
forecasting of water release from the snowpack presents a formidable
challenge. Such variability may lead to harmful environmental and
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societal consequences, including snowmelt-induced floods, transport of
pollutants or excess nutrients in rapid snowmelt events, and lack of
adequate streamflow for irrigation, human consumption and power
generation. Thus, accurate forecasting of water release from the
snowpack is a requisite component of any accurate streamflow model in
mountainous regions or other regions where snow is present.

Currently, forecasters at the U.S. Department of Agriculture
National Resources Conservation Service (NRCS) Water Supply
Forecasting Program use a program called Visual Interactive Prediction
and Estimation Routines (VIPER) to make seasonal streamflow fore-
casts. These streamflow models are based on data retrieved from snow
telemetry (SNOTEL) stations. SNOTEL stations provide snowpack-water
content data via pressure-sensing snow pillows. Temperature, pre-
cipitation, and snow depth also are measured at these SNOTEL stations,
which are distributed throughout much of the western United States.
Because of the expensive nature and upkeep of SNOTEL stations, they
are usually located in areas where snow cover is expected for a large
portion of the year. SNOTEL sites are often in remote locations running
along mountain ranges at high elevations. Fig. 1 shows the distribution
of SNOTEL stations within the Columbia Basin. Sensor data are re-
corded every 15min and transmitted from stations to a collection fa-
cility via meteor-burst technology. Example data for one of these
SNOTEL stations are depicted in the Appendix (Fig. A1). While these
SNOTEL data are temporally detailed, they are spatially sparse at the
watershed scale and not intended to represent total snow across a basin

(Gleason et al., 2016). Moreover, using solely these SNOTEL data to
forecast streamflow inherently introduces bias as not all locations inside
of the Columbia Basin tend to have as much snow as these exposed,
high-elevation stations. Additionally, Nolin and Brown (2008) found
that SNOTEL sites in the Willamette River Basin did not sample 50% of
the elevation range that is typically snow covered. Within the CRB,
SNOTEL sites sample elevations between 128 and 2902m above sea
level. Similar concerns with the basin-wide representativeness of
SNOTEL locations have been explored at the headwaters of the Rio
Grande River Basin (Molotch and Bales, 2006).

Here, we examine the utility of remote-sensing data in the predic-
tion of seasonal streamflow volumes at selected forecast locations
within the Columbia River Basin. Throughout the satellite era, ob-
servations of snow cover from various space-based instruments have
been studied for their potential to enhance seasonal streamflow fore-
casts. For example, Rango et al. (1977) found that early meteorological
satellites could be used to derive runoff estimates in the Himalayan
region, with the potential to improve water resources management.
Since this time, observations from the Landsat platform and instruments
including the Special Sensor Microwave Imager (SSM/I) and Moderate
Resolution Imaging Spectroradiometer (MODIS) have been used in
studies of seasonal streamflow and its relationship to snow cover extent
(e.g. Rango and Martinec, 1979; Zhou et al., 2005; McGuire et al., 2006;
Andreadis and Lettenmaier, 2006; Nagler et al., 2008; Tong et al., 2010;
Hall et al., 2012; Bergeron et al., 2014). It is important to note that

Fig. 1. The locations of US SNOTEL stations (red dots) superimposed on a map of the subbasins of interest. Note that the SNOTEL stations commonly are situated
along subbasin boundaries, typically at or near geographic apices, where snow cover commonly is thicker and/or more persistent than lower elevations.
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cloud obscuration is limiting MODIS models. Many studies have been
done to reduce the negative effect of cloud cover (Parajka and Blöschl,
2008).

Specifically, our study has utilized the latest generation of satellite-
derived snow cover extent (SCE) data from the National Oceanic and
Atmospheric Administration's National Environmental Satellite, Data
and Information Service (NOAA/NESDIS) to determine whether this
product may prove to be a useful tool in predicting spring streamflow
discharge in the CRB. Historical NOAA/NESDIS-produced snow maps
derived from visible satellite imagery have been recognized as a useful
tool in the assessment of snow distribution in drainage basins (Rango,
1993). In other efforts analogous to the project described here, weekly
SCE products from NOAA/NESDIS have demonstrated a strong re-
lationship between streamflow and snow cover extents during the
spring melt season in both large Siberian watersheds and the Yukon in
northwest Canada (Yang et al., 2003, 2009). The working hypothesis is
that using the rich array of remote-sensing SCE data will improve
streamflow forecasting by decreasing the uncertainty, and perhaps
spatial bias, introduced from the sparsely distributed SNOTEL stations.
This hypothesis has been examined in the Upper Colorado River Basin,
where studies have shown that the utilization of areal snow coverage
information (from MODIS) has improved streamflow prediction (Liu
et al., 2015). We propose a selection criterion to detect locations im-
portant in streamflow modeling, introduce a metric based on these lo-
cations, and analyze this metric's efficacy in selected subbasins with
varying climates.

2. Materials and methods

2.1. Data sources

The primary observational data source in this study was the

Interactive Multisensor Snow and Ice Mapping System (IMS), which is
the latest generation in a joint effort from NOAA/NESDIS, the Naval Ice
Center, and the United States Coast Guard. The joint product of these
three federal organizations is called the National Ice Center (NIC).

Beginning in the late 1960s, weekly maps were generated by trained
analysts who relied primarily on visible satellite imagery to make de-
cisions regarding the presence or absence of snow or ice cover. These
early maps were hand-drawn with the goal being simply obtaining the
most accurate evaluation possible. Maps were then digitized using a
128× 128 grid overlay of the polar stereographic projection (Robinson
et al., 1993; Estilow et al., 2015). In late 1998, IMS mapping released its
first operational daily product, a map gridded at about a 24-km re-
solution at 60°N latitude (Ramsay, 1998). Since then, these IMS maps
have been generated daily, first by analysts at the NOAA/NESDIS Sa-
tellite Applications Branch and for the past decade at the NIC. In March
of 2004, a higher resolution (4-km grid) product was introduced
(Helfrich et al., 2007).

To understand the format of the IMS data, it is best to think of a
square grid overlaid on top of a polar stereographic projection of the
entire Northern Hemisphere (see Fig. A2). This grid is then stripped
down to only include points within the Columbia River Basin. These
grid points can be further reduced to any subbasin or watershed of
interest within the Columbia system. IMS daily SCE values are binary
(snow/no snow) for each pixel. Fig. 2 includes maps at the 4-km re-
solution for four dates that depict the wide range of snow cover con-
ditions that may occur within the basin over the course of a season.

The IMS methodology facilitates the incorporation of data from
multiple satellite and in situ sources, and includes interactive image
analysis to better recognize regions covered by snow and ice from those
lacking such covers (Helfrich et al., 2012). Despite the addition of more
imagery and better analytic tools over the years, the product has con-
sistently relied on trained analysts primarily evaluating visible imagery

Fig. 2. Snow cover extent (SCE) within and adjacent to the Columbia Basin are shown on four selected dates within the IMS era. The maps depict grid cells at 4-km
resolution that are 50% or more snow covered as white and those less than 50% covered (including those that are entirely snow free) as green.
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to generate SCE maps. Both the 24-km and the 4-km IMS resolutions
used in this study can be accessed from the National Snow and Ice Data
Center (National Ice Center, 2008).

Fig. 3 displays this spatial variability in SCE over the entire region
during the course of the IMS era. In Fig. 3, we see the percent snow

cover across the basin from 1999 to 2015 for the 24-km resolution (top)
and from 2005 to 2015 for the 4-km resolution. While not covering a
typical 30-year climatological interval, these analyses demonstrate the
considerable spatial variation in SCE, which is clearly a strong function
of elevation as well as latitude.

Fig. 3. The percent of days with snow cover in the Columbia River Basin based on 24-km resolution data (upper: 1999 – 2015) and 4-km resolution data (lower: 2005
– 2015).
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Fig. 4. Yakima subbasin shown with the IMS 24-km locations in the full model (black and red dots), the IMS 24-km locations in the reduced model (red dots), and the
USGS gauging location at Yakima Parker (blue dot).

Fig. 5. April to July streamflow volume in the Yakima basin as a function of the average February – March PSC .
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As noted earlier, and depicted in Fig. 3, this gridded product exists
in two formats, at 24-km and 4-km resolution. At first glance, it seems
as if the higher resolution product would provide a more powerful
predictive tool than the lower resolution. However, there are several
notable tradeoffs associated with this increase in resolution. The most
significant of these tradeoffs is that the 4-km data only dates back to
March 2004, whereas the 24-km data extends back to January 1999.
Because our period of record is relatively short, we decided to employ
the lower resolution IMS product only, the daily 24-km product, al-
though we do examine the effectiveness of the 4-km product in the
Yakima subbasin. We believe that the 24-km product provides the
spatial and temporal resolution appropriate for an initial investigation
within the basins of the Columbia system, while at the same time not
sacrificing a critical five years of prediction power.

We compare IMS snow cover to measured streamflow discharge.
Streamflow is recorded at thousands of gauging stations throughout the
nation by the United States Geological Survey and freely available
online (U.S. Geological Survey, 2012). The distribution of stream
gauges within the Deschutes subbasin is shown in Fig. A3, along with
discharge data for two separate gauging stations from September 2009
to August 2010. We can see that only a few SNOTEL stations lies within
the Deschutes subbasin. Many nearby SNOTEL stations are located just

Fig. 6. February to March PSC variance for all 24-km IMS grid cells in the Columbia River Basin along with outlines of subbasins of interest.

Table 1
Selection criteria for each of the subbasins of interest.

Subbasin Feb – Mar Full PSC 50th

percentile variance
Feb – Mar Full PSC 50th

percentile correlation

Yakima 519.63 0.46
Deschutes 548.90 0.48
John Day 579.03 0.42
Clearwater 830.28 0.49
Pend Oreille 567.91 0.39
Kootenai 129.12 0.32

Fig. 7. Full PSC (top) and Reduced PSC (bottom) versus the Yakima Parker
streamflow volume (1999–2015).
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west of this watershed. Consequently, this would make it difficult to use
SNOTEL as a predictor for streamflow at these gauging sites. This
provides perspective regarding the spatial paucity of SNOTEL sites
when looking within specific subbasins. Given the low density and re-
lative distribution of SNOTEL sites, one might assume that the

streamflow prediction at many of these gauging stations may not be
directly related to measurements recorded at the SNOTEL locations.

2.2. Method development

To present our methodology, preliminary analyses are restricted to
the 24-km product inside of the Yakima subbasin (Fig. 4). Once we have
defined our method, we will examine its performance in other sub-
basins. All of our analyses focus only on the critical spring discharge
season, April – July, when snowmelt often is at its highest, and snow-
pack distribution and morphology is most transient and challenging to
characterize.

As a first round of exploration into the utility of snow cover as a
predictor for streamflow volume, a generic metric of percent snow
cover is defined from the 24-km IMS satellite data using the following
formula.

∑=
=

PSC
N

x100* 1
n

N

1 (1)

Here, N is the total number of days of interest in our prediction time
frame, and x equals 1 if that grid point is under snow cover and 0 if that
grid point is uncovered. Therefore, at each IMS location, PSC simply
represents the percentage of days under snow cover for a given time
window.

Intuitively, it seems as if the best time window for employing a
snow-based metric to predict April – July streamflow volume would be
immediately preceding or during these months. In Fig. 5, we explore
this thought a bit more. Using Eq. (2) below, we create a spatial mean
PSC metric.

∑=
∈

SpatPSC
N

PSC1

r R2 (2)

This new metric, SpatPSC , is simply the average of all PSC values
within a certain region, R. In Fig. 5, we examine the relationship be-
tween each month's SpatPSC value and the April – July streamflow
volumes inside of the Yakima subbasin. In Fig. 4, the black and red
points represent each IMS location of which SpatPSC is based, and the
blue point indicates the location of the streamflow gauge. For the
months August – December, we predict the upcoming season's dis-
charge, as this is the period during which snow begins accumulating for
the season. Consequently, in Fig. 5, the months from August to De-
cember have one less data point than other months, as we do not have a
discharge volume for 2016. Hence, there are 17 years (1999–2015) of
prediction for the months January – July, but only 16 years
(1999–2014) of prediction for the months August – December. With
correlation coefficients less than 0.3, we see that the months July –
October as well as January may have little value in April – July dis-
charge prediction. Correlations are highest in April and May, indicating
that these months would be could predictors for total spring discharge.
This is to be expected as these months fall within the forecast period.
Ideally, however, a strong signal could be detected from months pre-
ceding the spring forecast period and therefore we will focus on Feb-
ruary and March.

Next, we argue that these IMS data may be more “signal-rich” when
a large fraction of grid points is neither primarily snow covered for a
large portion of the year nor primarily snow free for a large portion of
the year. It is difficult to extract an instructive signal from data that is
primarily constant for a large portion of the year, thus this method
might work better by selecting grid points that document a snowpack
that builds up and then recedes seasonally.

One way to attack this issue is to examine certain regions within a
basin that experience more variability in snow cover than others. As

Table 2
Comparison of the February – March reduced PSC to that of the March reduced
PSC linear regression models in the all six subbasins.

Feb-March snow
signal

March snow signal

R2 P-value R2 P-value Degrees of
freedom

Yakima Full 0.35 0.0124 0.42 0.0047 15
Yakima Red. 0.52 0.0012 0.56 0.0006 15
Deschutes Full 0.52 0.0017 0.64 0.0002 14
Deschutes Red. 0.63 0.0002 0.69 0.0001 14
John Day Full 0.30 0.0232 0.29 0.0245 15
John Day Red. 0.34 0.0146 0.39 0.0075 15
Clearwater Full 0.31 0.0204 0.35 0.0118 15
Clearwater Red. 0.35 0.0119 0.41 0.0053 15
Pend Oreille

Full
0.24 0.0462 0.33 0.0158 15

Pend Oreille
Red.

0.25 0.0412 0.34 0.0138 15

Kootenai Full 0.16 0.1097 0.17 0.0997 15
Kootenai Red. 0.17 0.0963 0.19 0.0810 15

Table 3
The inter-annual median variances of the reduced PSC , where PSC metrics are
based off of February – March as well as March, alone.

Subbasin Feb-March median variance March median variance

Yakima 998.49 1137.45
Deschutes 1021.32 1750.78
John Day 877.45 1105.59
Clearwater 1004.20 1268.90
Pend Oreille 812.78 1258.98
Kootenai 831.32 1161.02

Fig. 8. Mean inter-annual variance vs. full (blue) and reduced (red) p-values for
each of our six subbasins. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article)
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Biggs and Whitaker (2012) found in the Merced River Basin, ablation
may be occurring within critical elevation zones that shift during the
season, dominating melt volumes. We note the elevation range sampled
via our 24-km IMS data is within 0 and 3781m above sea level (a larger
elevation range than is sampled by SNOTEL alone). For example, many
of the higher elevations inside of a Columbia subbasin are primarily
snow covered for many months of the year, if not year-round, whereas
lower elevation cells will be primarily uncovered, even throughout
much of the winter. What makes prediction even more difficult is that,
often, cells that remain constant throughout a given year will remain
constant inter-annually. In contrast, grid points at these critical eleva-
tions (Biggs and Whitaker, 2012) might be expected to have more
variability in snow extent within a season and more notably, inter-an-
nually. In Fig. 6, we display a map of the inter-annual February –March
PSC variance at the 24-km resolution. Identification and examination of
these key areas might make it easier to recognize an effective predictive
discharge signal for the basin. Essentially, when looking at the average
across an entire subbasin, the strength of the discharge signal that
might have been extracted from these critical elevation IMS grid cells is
being diluted by the noise of less variant IMS locations.

Given the objective of selecting points that are highly correlated
with spring discharge as well as high inter-annual SCE variability, we: i)
find the correlation of each IMS location's February – March PSC with
discharge; ii) calculate each location's inter-annual variance in
February – March PSC ; and iii) select those points that are in the top
50th percentile in both correlation and variance (values larger than the
statistics reported in Table 1). Again, the motivation for utilizing the
February – March prediction period is that the months immediately
preceding the streamflow season should be most instructive regarding
the upcoming spring discharge. The red points in Fig. 4 indicate the 10

locations that met the dual criteria of being in both the top 50th per-
centile for variance as well as the top 50th percentile for correlation
with streamflow.

Fig. 7 depicts scatterplots comparing PSC to streamflow for both the
full PSC (all 33 IMS points) and the reduced PSC (10 selected IMS
points). Comparing the unfiltered to the filtered data (Fig. 7), it can be
deduced that much of the Yakima basin must be primarily uncovered
for a large portion of our February – March prediction timeframe.
Specifically, this can be seen from the rightward shift in the data points
in our reduced scatterplot in Fig. 7(i.e. the reduced data sees higher
percent SCE in February and March). Simple linear regression of PSC to
predict Yakima Parker streamflow volume (Table 2: Feb-March Snow
Signal) documents a substantial improvement in the strength of our
signal using the reduced model.

3. Results and discussion

3.1. Examination of the utility of the 24-km product in other subbasins

Here, we compare the performance of our “select cell” method to
that of the overall PSC average in five other subbasins and discuss
improvements that could be made to our model. Recall that our ex-
planatory variable is the mean of certain IMS PSC values from February
1 to March 31. The full PSC signal is based on the entire set of IMS
sample locations within our subbasin of interest. Whereas the reduced
signal is based only on the IMS locations which exhibit both large
correlation between the February – March PSC and total spring dis-
charge as well as large February – March PSC variance.

We proceed to the Deschutes subbasin (Fig. 1). In this particular
subbasin, the streamflow gauging location went offline in September

Fig. 9. Yakima subbasin shown with the IMS 4-
km locations in the full model (gray and red
dots), the IMS 24-km locations in the reduced
model (red dots), and the USGS gauging loca-
tion at Yakima Parker (blue dot). (For inter-
pretation of the references to color in this
figure legend, the reader is referred to the web
version of this article)
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2014, so the prediction period is from 1999 to 2014. Here, the full PSC
signal is based on 58 IMS sample locations, whereas the reduced PSC
signal includes only 18 IMS sample locations (Fig. A4). The results for
the Deschutes subbasin are summarized in Fig. A5 and Table 2 (Feb-
March Snow Signal). Again, we see a rightward shift in the reduced-
data scatterplot indicating that the basin is primarily uncovered when
compared with our selected cells. We also note a substantial improve-
ment when regressing discharge against the reduced signal compared to
that of the full data, although both are highly statistically significant.

Now, we consider the adjacent river subbasin, John Day (Fig. 1).
This subbasin spans a smaller area than does the Deschutes. The full
PSC metric is based on all 47 IMS locations inside this region, while the
reduced signal only includes 16 IMS locations (Fig. A6). Fig. A7 and
Table 2 (Feb-March Snow Signal) show that the methodology presented
here did not perform as well in this subbasin, although there is still an
improvement in using the reduced signal.

The final three subbasins (Clearwater, Pend Oreille, and Kootenai,
Fig. A8, A10, and A12, respectively) are clustered in the eastern portion
of the CRB. The results are very similar for these subbasins. Again,
Table 2 (Feb-March Snow Signal) displays the results of the linear re-
gression models for these three subbasins as well. In each of these three
subbasins, the R2 improvements were minimal. The p-values were sig-
nificant for both the full and reduced models in both the Pend Oreille
and Clearwater subbasins at the α=0.05 level. The Kootenai was the
only subbasin that did not yield a statistically significant effect in either
of the full or reduced signal's at the α=0.05 level. All other subbasins
saw a significant effect in both the full and reduced signals.

Why did the reduced model have such a large improvement in both
the Yakima and Deschutes subbasins in comparison with our other four
watersheds? We hypothesize that our February – March PSC signals
have relatively low inter-annual variance in these four regions. Note
that a low inter-annual PSC variance would indicate that our snow
signal is not changing much from year to year. This would imply that it
would be difficult to differentiate between low and high seasonal dis-
charge as our signal is somewhat constant. Table 3 (Feb-March) dis-
plays the median inter-annual variances for the six subbasins of in-
terest. Fig. 8 is a plot of our mean inter-annual variances against the full
and reduced p-values for the six subbasins. There does appear to be a
negative relationship between inter-annual variance and the sig-
nificance of our signal, where higher variances tend to have lower p-
values.

The two subbasins for which our PSC metric performed the worst
(Kootenai and Pend Oreille) had the lowest variances among the six
subbasins. Somewhat surprisingly, the Clearwater region had a high
median variance (Table 3: Feb-March). Also, Figs. A8, A10, and A12
indicate that the Clearwater, Pend Oreille, and Kootenai subbasins
(located in northern Idaho, northwestern Montana, and Alberta) tend to
have more snow cover than the Yakima, Deschutes, and John Day
subbasins. Perhaps this February – March prediction period does not
provide enough inter-annual variability in these rather snowy regions.
On the other end of the spectrum, the John Day region, in central
Oregon, sees much less snow than the Pend Oreille, Clearwater and
Kootenai watersheds. The relatively small improvements in the reduced
model in this region could again be caused by a lack of inter-annual
variation in snow cover in February and March; this time, however, the
basin is consistently seeing very little snow.

3.2. Examination of the utility of the 24-km product for a March prediction
period

In this section, we discuss the utility of an alternative PSC predic-
tion period: one that is based entirely on March. We expect that in our

snowier subbasins (Clearwater, Pend Oreille, and Kootenai), we would
have more variation in snow cover over just March as opposed to
February and March together. In Table 3, we note that our median
inter-annual reduced PSC variances have increased when we restrict
our timeframe to just March in each of the six subbasins. In Table 2, we
see that in every case except one (John Day Full), our p-values have
decreased and R2 values have increased with this new March PSC
metric which sees higher variations. For each subbasin, it is important
to note that the reduced models may be based on different sets of lo-
cations. This makes sense as locations which see high February – March
variability may not see high March variability and vice versa.

Again, our reduced PSC metric significantly outperformed our full
PSC metric in the Yakima subbasin. With the March PSC metric,
however, the John Day subbasin saw substantial improvements in the
R2 value in the restricted model. We observed a moderate improvement
in R2 when using the reduced metric in both the Deschutes and
Clearwater subbasins. Improvements were again minimal in both the
Pend Oreille and Kootenai subbasins. As each subbasin sees its own
climate and snow patterns, we expect the optimal time window to differ
across subbasins. Further studies could be done on PSC time optimi-
zation for each subbasin.

3.3. Examination of the 4-km product in the Yakima subbasin

In this section, we report on a primary investigation into the IMS 4-
km product for only the Yakima subbasin. Despite the increased pre-
diction power of the March PSC, we return to the original February –
March prediction period to compare the results to that of the 24-km
product. We note that in 2004, we have used only March PSC , as IMS 4-
km data does not exist before March of 2004. In Fig. 9, we present a
map of the new IMS locations of the full PSC metric (red and gray
points) as well as the reduced PSC metric (red points only). Comparing
Fig. 4 to Fig. 9, we see that similar regions within the Yakima subbasin
meet our dual criteria of high correlation between February – March
PSC and streamflow volume as well as high February – March PSC
variance at both spatial resolutions.

As before, we regress the full and reduced PSC metrics to the total
spring streamflow discharge. The full and reduced models have p-va-
lues of 0.0097 and 0.0015 with R2 values of 0.50 and 0.65, respectively.
The results are very similar to that of the 24-km product (Table 2) in-
dicating that the 24-km product is sufficient. We restate that the major
motivation for using the 24-km product is that it is based on a longer
historical record (1999–2015) compared to that of the 4-km product
(2004–2015).

4. Conclusions

These results indicate that in most of the tested areas within the
CRB, a simple temporal PSC average built using the IMS remotely
sensed snow cover data provides a statistically significant predictive
model of April – July seasonal discharge volume. In only one (Kootenai;
p-value of 0.110) of the six subbasins examined were the results not
statistically significant at the α=0.05 level for our February – March
signal. When restricting our models to include only locations with re-
latively high correlation and variation, we saw notable improvements
in prediction power.

All of the restricted February – March PSC models were significant
at the α=0.10 level, with the Kootenai subbasin being the only re-
duced model not significant at the α=0.05 level (p-value of 0.096).
However, in many of these subbasins (John Day, Clearwater, Pend
Oreille) we note that our reduced PSC metric did not substantially
outperform our full data PSC metric. In the Yakima and Deschutes
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subbasins, the reduced PSC metric saw a substantial improvement over
that of the full PSC metric, although both metrics saw statistically
significant results at the α=0.05. When restricting the scope of our
reduced PSC metric to just March alone, we saw increased variations in
all six of our subbasins. Consequently, we saw an increase in predictive
power in every reduced model. We believe that each subbasin will
exhibit its own optimal temporal PSC metric based, related to eleva-
tion, climate, and snowmelt-discharge patterns. We reiterate that im-
provements in prediction power are inherently restricted by the role of
snow cover variation in determining river discharge. In some subbasins,
snow cover variation will have a much larger role than in others.

Our methodology shows that IMS provides remotely-sensed data
that are ready to “plug and play” into an existing streamflow forecast
model such as NRCS VIPER. Using IMS-derived SCE alongside inputs
currently used by VIPER has the potential to improve CRB streamflow
predictions. One advantage to using IMS SCE with an existing predic-
tion tool such as VIPER is its operational nature. IMS forward proces-
sing will continue, and as the temporal record increases in length,
forecast success is expected to improve.

The results of these analyses show that seasonal streamflow dis-
charge can be related to these satellite-derived IMS SCE data in the
Columbia River Basin. However, utility of IMS for streamflow fore-
casting appears not to be uniform across the entire region; it may be
some function of location, climate, and elevation. Future analyses could
explore the optimization of time period for the PSC metric, different
selection criteria, or analyze the impact of utilizing some sort of com-
bination of both SNOTEL stations and these IMS data. More advanced
models could also include north-south slope and aspect features and

their effects on snow melt and timing of peak streamflow – in the
Northern Hemisphere, south facing slopes receive less sun radiation
than do north facing slopes (Kumar et al., 2013). An ideal model would
utilize elevation data, IMS data, and SNOTEL snowpack measurements
to interpolate and estimate the amount of snow on the ground at each
IMS grid location (as these locations are far more abundant than
SNOTEL locations). This could be used to recognize possible peak
streamflow events (i.e. when temperatures move above freezing in
areas where the snowpack is estimated to be particularly dense) and
predict how much water will be melting off of that particular snowpack.
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Appendix

See Figs. A1–A13 here.

Fig. A1. Snow cover extent (top) and snow depth (bottom) for the Three Creeks Meadow, Oregon SNOTEL station (location shown on map) from 1 September
2009–31 August 2010.
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Fig. A2. The 24-km IMS grid coordinates in polar stereographic projection (top) and equirectangular projection (below) over the Columbia River Basin.

Fig. A3. Stream discharge observations (cfs) at two USGS gauging stations on the Deschutes River, Oregon from 1 September 2009 to 31 August 2010.
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Fig. A4. IMS sample locations in the Deschutes subbasin for the Full PSC metric (black and red dots) as well as Reduced PSC metric (red dots).

Fig. A5. Full PSC (top) and Reduced PSC (bottom) shown versus Deschutes River Benham Falls streamflow volume (1999–2015) with the correlation shown in
scatterplot.
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Fig. A6. IMS sample locations in the John Day subbasin for the Full PSC metric (black and red dots) as well as Reduced PSC metric (red dots). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article)

Fig. A7. Full PSC (top) and Reduced PSC (bottom) shown versus John Day River Service Creek streamflow volume (1999–2015) with the correlation shown in
scatterplot.
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Fig. A8. IMS sample locations in the Clearwater subbasin for the Full PSC metric (black and red dots) as well as Reduced PSC metric (red dots). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article)

Fig. A9. Full PSC (top) and Reduced PSC (bottom) shown versus Clearwater River at Orofino streamflow volume (1999–2015) with the correlation shown in scatterplot.
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Fig. A10. IMS sample locations in the Pend Oreille subbasin for the Full PSC metric (black and red dots) as well as Reduced PSC metric (red dots). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article)

Fig. A11. Full PSC (top) and Reduced PSC (bottom) shown versus Clark Fork River at Missoula streamflow volume (1999–2015) with the correlation shown in
scatterplot.
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Fig. A12. IMS sample locations in the Kootenai subbasin for the Full PSC metric (left) as well as Reduced PSC metric (right).

Fig. A13. Full PSC (top) and Reduced PSC (bottom) shown versus Kootenai River at Leonia streamflow volume (1999–2015) with the correlation shown in scatterplot.
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