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ABSTRACT

Eighteen global atmospheric general circulation models (AGCMs) participating in the second phase of
the Atmospheric Model Intercomparison Project (AMIP-2) are evaluated for their ability to simulate the
observed spatial and temporal variability in snow mass, or water equivalent (SWE), over North America
during the AMIP-2 period (1979–95). The evaluation is based on a new gridded SWE dataset developed
from objective analysis of daily snow depth observations from Canada and the United States with snow
density estimated from a simple snowpack model. Most AMIP-2 models simulate the seasonal timing and
the relative spatial patterns of continental-scale SWE fairly well. However, there is a tendency to overes-
timate the rate of ablation during spring, and significant between-model variability is found in every aspect
of the simulations, and at every spatial scale analyzed. For example, on the continental scale, the peak
monthly SWE integrated over the North American continent in AMIP-2 models varies between �50% of
the observed value of �1500 km3. The volume of water in the snowpack, and the magnitudes of model
errors, are significant in comparison to major fluxes in the continental water balance. It also appears that
the median result from the suite of models tends to do a better job of estimating climatological mean
features than any individual model. Year-to-year variations in large-scale SWE are only weakly correlated
to observed variations, indicating that sea surface temperatures (specified from observations as boundary
conditions) do not drive interannual variations of SWE in these models. These results have implications for
simulations of the large-scale hydrologic cycle and for climate change impact assessments.

1. Introduction

The Atmospheric Model Intercomparison Project
(AMIP) was initiated in 1989 under the auspices of the
World Climate Research Program. Its mission is to sys-

tematically compare and evaluate atmospheric general
circulation models (AGCMs) that have been developed
by an international array of research institutes for in-
vestigation of climate change issues (Gates 1992). This
study was carried out as diagnostic subproject number
28 with a mandate to evaluate GCM simulations of
snow cover. In the first phase of AMIP (AMIP-1)
(Gates et al. 1999), Frei and Robinson (1998) evaluated
the ability of 27 AGCMs to simulate the spatial extent
of snow, or snow-covered area (SCA), over North
America. SCA is important for its direct impacts on the
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surface energy budget and indirect impacts via feed-
back mechanisms on temperatures, meridional tem-
perature gradients, atmospheric greenhouse gases, at-
mospheric and oceanic circulation, and local effects on
stability and cloudiness (Cohen 1994; Barry 2002).
AMIP-1 models displayed seasonal biases in SCA over
both North America and Eurasia, and underestimated
interannual variability.

The second phase of AMIP (AMIP-2), initiated in
1999, includes results from a more recent generation of
models, with improved parameterizations, a longer in-
tegration period, and increased spatial resolution. Frei
et al. (2003) noted major improvements in AMIP-2
SCA simulations, including the elimination of some
temporal and spatial biases in the seasonal cycle of con-
tinental-scale SCA variations, as well as more realistic
interannual variability. Over Eurasia, interannual vari-
ability of SCA tends to be underestimated; over North
America, however, interannual variability tends to be
more realistic, although significant between-model
variability remains.

In the past, the lack of a high quality, global gridded
snow water equivalent (SWE) dataset has been an ob-
stacle for evaluating snow mass in GCMs. Previous
evaluations of GCM snow mass (Foster et al. 1996;
Yang et al. 1999) used information derived from either
passive microwave data—which tends to underestimate
snow depth, is unreliable over mountainous and for-
ested regions, and for which the algorithms cannot be
applied with confidence to all regions of North America
(Armstrong and Brodzik 2002)—or from the U.S. Air
Force (USAF) snow depth climatology (Foster and
Davy 1988), which was derived from a station observa-
tion network that had inadequate coverage to capture
the true spatial variability of the snowpack. To address
these problems, a major effort was made as part of this
AMIP-2 snow evaluation subproject to develop a high
quality SWE dataset for GCM evaluation. The result-
ing gridded dataset (Brown et al. 2003) provides
monthly mean values of SWE over the North American
continent for model evaluation purposes. Unfortu-
nately, this process could not be extended to Eurasia
because of insufficient in situ snow data during the
AMIP-2 period.

The purpose of this study is to complement the evalu-
ation of SCA in AMIP-2 models (Frei et al. 2003) by
evaluating AMIP-2 SWE simulations. Toward that end,
we examine the abilities of the models to simulate con-
tinental-scale monthly and seasonal variations in SWE
over North America (NA; section 5); simulate broad
spatial patterns of SWE across North America (section
6); and simulate regional-scale SWE variations over
subregions of NA where the observational network is

most dense and reliable for estimating regional values
(section 7). First, brief overviews of the data (section 2),
models (section 3), and methodology (section 4) are
presented. The results sections are followed by discus-
sion and conclusions (section 8).

2. Data

a. Gridded SWE dataset for North America

The primary dataset used for model evaluation is the
gridded SWE dataset produced specifically for this
project by Brown et al. (2003). The dataset covers the
entire NA landmass but for this study the spatial do-
main was confined to the region between 20° and 70°
because of difficulties resolving the Arctic archipelago
in the SWE analysis. SWE values were estimated from
a hybrid approach based on optimal interpolation of
daily snow depth observations from over 8000 stations
from the United States and Canada, with snow density
estimated from a simple snowpack model. The snow
depth analysis is based on the scheme developed by
Brasnett (1999) and employed operationally at the Ca-
nadian Meteorological Centre (CMC). The analysis
was run on a 0.3° Gaussian grid and reinterpolated to a
regular 0.25° latitude–longitude for use in applied stud-
ies. The first-guess field for the optimal interpolation
uses a simple snow accumulation, aging, and melt
model driven by 6-hourly values of air temperature and
precipitation from the 15-yr European Centre for Me-
dium-Range Weather Forecasts (ECMWF) Re-analysis
(ERA-15) with extensions from the Tropical Ocean
Global Atmosphere (TOGA) operational data archive
to cover the full AMIP-2 period (1979–96). The opti-
mal-interpolation process includes elevation weighting
to maintain the integrity of observed data in mountain-
ous regions. Gridded snow depth and derived SWE val-
ues were found to agree well with available indepen-
dent in situ and satellite data over midlatitudinal re-
gions of the North America, and the snow depth
climatology exhibited several improvements over the
USAF product of Foster and Davy (1988). While
Brown et al. (2003) is considered the currently best
available estimate of large-scale variability in SWE
over NA for the AMIP-2 period, reliability does vary
spatially with the density of the observed snow depth
reporting network. The authors have the greatest con-
fidence in the product in “data rich” areas of NA with
relatively small orographic effects, which are mainly
located south of �55°N and east of the Rocky Moun-
tains. This dataset is available from the Canadian Cryo-
spheric Information Network (see online at www.
ccin.ca).
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b. Additional datasets

The Brown et al. (2003) dataset is complemented by
two additional datasets. First, National Oceanic and At-
mospheric Administration (NOAA) weekly satellite-
derived snow extent observations are used to compute
fractional SCA. As the NOAA dataset is derived inde-
pendently of the SWE dataset, it is used as partial veri-
fication. The NOAA data, described in Robinson
(1993), consist of digitized weekly charts of snow cover
derived from visual interpretation of visible satellite im-
agery by trained meteorologists. The charts are digi-
tized on an 89 � 89 polar stereographic grid for the
Northern Hemisphere (NH) with a grid spacing of
190.5 km at 60°N. The study used monthly snow-cover
frequency values computed from the NOAA data by
Rutgers University. These contain the corrections rec-
ommended by Robinson et al. (1991) and the Rutgers
weighting scheme (Robinson 1993) to correctly parti-
tion weekly charts into appropriate months.

The second additional dataset consists of gridded sur-
face temperature and precipitation estimates obtained
from the “Terrestrial Air Temperature and Precipita-
tion: Monthly and Annual Time Series (V1.02)” (Will-
mott and Matsuura 2001). This global dataset includes
over 7000 stations for air temperature and over 20 000
for precipitation that were interpolated on to a 0.5° by
0.5° latitude–longitude grid using climatologically aided
interpolation (Willmott and Robeson 1995), an en-
hanced version of a traditional distance-weighting
method, and spans the time period 1950–99. The pre-
cipitation data were corrected for gauge-induced sys-

tematic errors caused by wind, wetting on the interior
walls of the gauge, and evaporation from the gauge
(Legates and Willmott 1990). However, more recent
analyses suggest that the necessary gauge corrections
were underestimated over North America (Adam and
Lettenmaier 2003). This product is available from the
Center for Climatic Research, Department of Geogra-
phy, at the University of Delaware (see online at http://
climate.geog.udel.edu/�climate/).

3. Models

Table 1 identifies the 18 modeling groups whose
AMIP-2 results are available to the diagnostic sub-
projects at the time of this writing and are included in
this analysis. AMIP modeling groups run experiments
for designated years with identically specified boundary
conditions, including observed sea surface tempera-
tures, so that discrepancies in model results are attrib-
utable to internal differences between atmospheric
models. A variety of numerical schemes are employed,
including both finite differences and spherical harmon-
ics. The AMIP-2 time domain spans from 1979 through
1995. Therefore, 16 complete winter seasons, from
1979/80 through 1994/95, are available for evaluation.
The study presented here was carried out by diagnostic
subproject number 28 with a mandate to evaluate GCM
simulations of snow cover. For background information
on AMIP, and a list of references, see the AMIP Web
site (www-pcmdi.llnl.gov/Projects/amip/index.php).

Although models differ somewhat in their treatment

TABLE 1. Summary of atmospheric general circulation models evaluated in this analysis.

No.
Model

acronym Research institute

Resolution

Lat (°) Lon (°)

1 CCCMA Canadian Centre for Climate Modelling and Analysis, Canada 3.75 3.75
2 CCSR Center for Climate System Research, Japan 2.81 2.81
3 CNRM Centre National de Recherches Meteorologiques, France 2.81 2.81
4 COLA Center for Ocean–Land–Atmosphere Studies, United States 1.76 2.81
5 DNM Department of Numerical Mathematics, Russia 3.91 5.00
6 ECMWF European Centre for Medium-Range Weather Forecasts, United Kingdom 1.96 2.00
7 GISS Goddard Institute for Space Studies, United States 3.91 5.00
8 GLA Goddard Laboratory for Atmospheres, United States 3.91 5.00
9 JMA Japanese Meteorological Agency, Japan 1.88 1.88

10 MPI Max-Planck-Institut für Meteorologie, Germany 2.81 2.81
11 MRI Meteorological Research Institute, Japan 2.81 2.81
12 NCAR National Center for Atmospheric Research, United States 2.81 2.81
13 PNNL Pacific Northwest National Laboratory, United States 2.81 2.81
14 SUNYA The University at Albany, State University of New York, United States 2.81 2.81
15 UGAMP The U.K. Universities’ Global Atmospheric Modelling Programme, United Kingdom 2.50 3.75
16 UIUC University of Illinois at Urbana–Champaign, United States 3.91 5.00
17 UKMO U.K. Meteorological Office, United Kingdom 2.50 3.75
18 YONU Yonsei University, Korea 3.91 5.00
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of snow, for the most part AMIP-2 models use a rela-
tively simple approach where snow properties (albedo,
thermal conductivity) are incorporated into the top sur-
face layer. Models accumulate surface snow during pre-
cipitation events when the temperature of the lowest
atmospheric level is at or below freezing, and the snow-
fall rate exceeds the melt rate. Snowmelt typically oc-
curs as a result of the energy balance of the snowpack,
including terms for sensible and latent heat fluxes, with
some models including a term for the latent heat flux of
nonfrozen precipitation. Most models include a term
for sublimation, which is then added to the evaporative
flux from the surface to the atmosphere. Many models
parameterize fractional snow coverage in a grid box
using a critical threshold of SWE. Fractional coverage
sometimes depends on surface vegetation characteris-
tics as well. Snow cover usually affects the surface al-
bedo and surface thermal properties (i.e., heat conduc-
tion and heat capacity). The impact of the albedo pa-
rameterization employed can have significant impact
on the surface energy balance (Nolin and Frei 2001).
In some models the parameterizations for these effects
depend on surface roughness, and surface roughness
is sometimes parameterized as a function of snow
cover. Many of the models employ the Simple Bio-
sphere Model (SiB; Sellers et al. 1986), Biosphere–
Atmosphere Transfer Scheme (BATS; Dickinson et al.
1993), or land surface model (LSM; Bonan 1996) land
surface biosphere routines, which include modules for
handling snow. A comprehensive discussion of the pro-
cesses affecting the snowpack in each individual model
is not possible here for practical reasons. Model output
is provided as monthly mean values for all fields. Ob-
served and modeled fields are computed using the same
methodologies. The interested reader is referred to
the AMIP model documentation Web site (http://
www-pcmdi.llnl.gov/projects/modeldoc/amip2/) for
more details.

4. Methodology

The spatial domain of this analysis includes North
American land areas between 20° and 70°N latitude
and 200° and 300°E longitude. The temporal domain
covers 16 snow seasons in the AMIP-2 time period from
1979/80 to 1994/95. In a number of figures, box-and-
whisker plots are used to display monthly observed and
model results. Observed values are shown with aster-
isks, and results from AMIP-2 GCMs are summarized
using box-and-whiskers. Model bias is defined for our
purposes as the difference between the median model
value and the observed value. Between-model variabil-
ity is characterized by the spread indicated in the box-

and-whisker plots. In addition, bar plots of seasonal
mean results are shown for each model to facilitate
evaluation of individual models. Three types of analy-
ses are presented: 1) results integrated over the entire
study domain; 2) analysis of the spatial patterns of SWE
over the study domain; and 3) analysis for selected re-
gions.

a. Spatially integrated SWE

Simulated SWE values integrated over the entire
spatial domain are compared to values from the grid-
ded dataset in section 5. Monthly mean SWE values in
each model are area weighted and integrated over all
grid cells designated as “land” whose centers lie in the
study spatial domain. SWE is expressed volumetrically
as km3 of liquid water. SCA is calculated using the
method of Frei et al. (2003). For each model, SCA is
expressed as a fractional coverage by dividing the ab-
solute spatial extent of snow by the total land area in
the study domain. These methods for estimating SWE
and SCA are designed to remove the effects of the
different grid resolutions, and the resulting different
total land areas, in the model output and observed
datasets. For example, the North American surface ar-
eas within the study domain calculated from the models
included in this study range from 1.8 � 107 to 2.3 � 107

km2; the surface area calculated from the SWE dataset
is 1.9 � 107 km2, and from the NOAA dataset is 2.0 �
107 km2.

b. Spatial variation in SWE over NA

Spatial variations in observed and simulated seasonal
SWE are investigated in section 6 through comparison
of contour maps. The presentation and discussion of
results from each model is beyond the scope of this
article, so in most cases we investigate the median
model response. To facilitate the comparison, results
from each model and the gridded SWE dataset are re-
gridded to a common 2.5° � 2.5° latitude–longitude
grid. Three different spatial interpolation techniques
were performed and assessed: nearest neighbor, linear
interpolation, and cubic convolution (which is com-
monly used in the field of image processing). Results
from the three techniques differ only in some details,
but not in the basic spatial patterns, and not at all in the
conclusions. Linear interpolation was chosen for the
figures presented here because the contour lines appear
somewhat smoother than the other two methods. Con-
tour lines are plotted using a logarithmic scale in order
to capture the large spatial variability in snow mass
found over North America and using the Albers equal
area projection to allow realistic visual comparisons
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over a large latitude range. Note that the reinterpolated
results are used solely for the purposes of visual pre-
sentation; the evaluations of SWE values integrated
over the entire continent are performed using the sup-
plied resolution of each grid as described in section 4a.

c. Regional-scale analysis of SWE

Detailed evaluations are performed over four regions
that are located in areas with relatively dense snow
depth observation networks, where topographic influ-
ences on snow cover are modest, and where the derived
SWE dataset is considered most reliable for estimating
regional mean SWE variations (section 7). These re-
gions are limited to a minimum size constraint (�8°
wide in both latitude and longitude) to ensure that the
areas are adequately sampled by all models. In addition
to evaluations of SWE, the regional analyses include
evaluations of SWE accumulation, SCA, temperature,
and precipitation.

5. Spatially integrated results

In this section we examine the mean and variability
of monthly and seasonally averaged results for SWE
and SCA integrated over the continental landmass. In
all cases except one (which is noted in the text), differ-
ences between parametric and nonparametric results
are insignificant, so that only parametric statistics are
reported.

a. Monthly mean results

The seasonal cycle of monthly mean SWE over the
study domain is shown in Fig. 1a (asterisks). SWE var-
ies from a mean summer minimum in July–September
of under 200 km3 to a mean winter maximum in March
of �1500 km3. Also shown in Fig. 1a are box plots that
characterize the monthly model values. While models
tend to capture the timing of the seasonal cycle well,
they tend to ablate snow too rapidly in the spring. Es-
timates of the snow mass over North America vary
widely between models with peak SWE values exhibit-
ing a range from 700 to 2200 km3. This between-model
variability is large compared to variability (mean � two
standard deviations) from the gridded SWE dataset of
1300 to 1700 km3: more than half of the models have
mean March SWE values outside of this range.

The models appear to capture the overall seasonal
cycle in SWE interannual variability (Fig. 1b) reason-
ably well, although there is a noticeable increase in
differences between models in May. No conclusions are
made about internnual variability over the June–Sep-

ember period when the gridded SWE dataset is less
reliable.

Figure 2a shows mean monthly continental SCA (ex-
pressed as fractional coverage) from the AMIP-2 mod-
els compared to SCA from the NOAA dataset (crosses)
and SCA derived from the gridded SWE (asterisks).
The NOAA and gridded SWE datasets, although de-
rived independently, agree well with respect to mean
monthly SCA. We include both datasets here as an
independent verification of the Brown et al. (2003)
dataset, and also to corroborate the results of Frei et al.
(2003). Both show a peak areal coverage of �0.7 (i.e.,
70%) in January and a minimum of �0.1 in August.
Significant between-model variability is found, with
peak coverage varying from 0.5 to 0.8. In addition, we
find a tendency for models to underestimate spring
SCA. During months other than April, May, and June,
however, the median model value is very close to ob-
served values. The interannual variability of SCA is
�0.05 during all months, although there is some dis-

FIG. 1. North American snow water equivalent (km3). Values
from the gridded SWE dataset of Brown et al. (2003) are indicated
with asterisks. Box-and-whisker plots indicate model results from
18 AMIP-2 AGCMs and are interpreted as follows: middle line
shows the median value; top and bottom of box show the upper
and lower quartiles (i.e., 75th and 25th percentile values); and
whiskers show the minimum and maximum model values. (a)
Monthly mean values; (b) monthly standard deviations.
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agreement between the two observational datasets. The
disagreements are particularly apparent during spring
and summer (Fig. 2b), the period of greatest uncertain-
ties in both datasets: the gridded SWE dataset is known
to be less reliable during the summer months, and a
recent study of the NOAA dataset in northern Canada
(Wang et al. 2004) shows it was unable to capture the
snowmelt transition because of the combined influ-
ences of cloud cover and less frequent satellite coverage
at high latitudes. Some differences in interannual vari-
ability are found between models, although the differ-
ences are small compared to the magnitude of mean
SCA.

There is little indication of significant temporal cor-
relations between the gridded SWE dataset and mod-
eled SWE (Fig. 3) over the 16 seasons. This indicates

that, in AGCMs, the direct influence of SSTs on snow
variations is negligible. Note that using the Spearman
ranked correlation (not shown), which is generally
more robust to non-Gaussian distributions, gives simi-
lar results. These results are not surprising, given that
other research (Zwiers 1995; Compo and Sardeshmukh
2004; Kang et al. 2004; Liu and Wu 2004) has indicated
poor potential predictability of midlatitude climate in
AGCMs driven by SST boundary forcing (see discus-
sion section).

b. Seasonal mean results

Differences between models are highlighted by com-
paring seasonal (October–June) mean SWE in Fig. 4a.
Few models fall within �10% of the mean value from
the gridded SWE dataset of �850 km3, and there is a
tendency for models to underestimate SWE (9 out of 17
models). Only three models overestimate SWE. Results
from the models differ significantly, varying between
400 and 1200 km3.

With regards to the interannual variability of SWE,
models tend to overestimate the standard deviation
(Fig. 4b), yet underestimate the interquartile range
(IQR) (Fig. 4c). This indicates that the shape of the
distribution in models is different than in the gridded
SWE dataset, with the middle of the distribution too
tight (high kurtosis), and the tails of the distribution too
wide (low kurtosis). These differences are less signifi-
cant than differences in mean seasonal SWE (Fig. 4a).
Note that this is the only statistic for which we show

FIG. 2. North American snow-covered area. Units are fractional
coverage of the entire spatial domain. Values from the gridded
SWE dataset of Brown et al. (2003) are indicated with asterisks;
observed values from the NOAA dataset are indicated with
crosses. Box-and-whisker plots indicate model results from 18
AMIP-2 AGCMs and are interpreted as follows: middle line
shows the median value; top and bottom of box show the upper
and lower quartiles (i.e., 75th and 25th percentile values); and
whiskers show the minimum and maximum model values. (a)
Monthly mean values; (b) monthly standard deviations. The
crosses are not visible in some cases because they lie exactly over
the asterisks.

FIG. 3. Pearson correlation coefficients between modeled North
American SWE and values from the gridded SWE dataset of
Brown et al. (2003). Box-and-whisker plots indicate model results
from 18 AMIP-2 AGCMs and are interpreted as follows: middle
line shows the median value; top and bottom of box show the
upper and lower quartiles (i.e., 75th and 25th percentile values);
and whiskers show the minimum and maximum model values.
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both parametric and nonparametric results, because in
all other cases the differences were insignificant.

With regards to mean seasonal SCA (Fig. 5a), there
is a significant spread in model results, varying from
between �0.3 and 0.6 compared to the observed value
of �0.46. The interannual variability of seasonal SCA is

approximately an order of magnitude lower than mean
values, but there is significant spread between models
and some difference between the NOAA and gridded
SWE datasets (Fig. 5b).

6. Spatial variation in SWE over NA

The spatial distribution of mean seasonal (October–
June) SWE from the gridded SWE dataset is shown in
Fig. 6a. Details of the orographic effects on SWE in
western North America remain apparent even though
SWE values were reinterpolated to a relatively coarse
resolution (2.5° � 2.5° latitude–longitude). To facilitate
the evaluation of model results a median model field
was calculated at each grid point using the mean sea-
sonal SWE from each model over all simulation years.
The resulting median model field of mean seasonal
SWE (Fig. 6b) captures the basic shape of the observed
field: for example, larger values in the mountainous

FIG. 4. Seasonal (Oct–Jun) mean North American snow water
equivalent (km3). Observed values are indicated by the leftmost
bar. Each numbered bar corresponds to one model, and model
numbers correspond to those shown in Table 1. Horizontal lines
correspond to observed values �10%. (a) Seasonal mean values,
(b) seasonal standard deviations, and (c) seasonal interquartile
ranges. Results from model 7 are omitted because values were
much higher than observations or other models; see text for fur-
ther explanation.

FIG. 5. Seasonal (Oct–Jun) mean North American snow-
covered area. Units are fractional coverage of the entire spatial
domain. Observed values, shown indicated by leftmost bar, are
from the gridded SWE dataset (solid bar) and from the NOAA
dataset (open bar). Each numbered bar corresponds to one
model, and model numbers correspond to those shown in Table 1.
Horizontal lines correspond to gridded SWE values �10%. (a)
Seasonal mean values; (b) seasonal standard deviations.
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western sections, eastern Canada, and the boreal forest;
smaller values in the lee of the Rocky Mountains; and
a reasonable estimation of the southern boundary of
the snowpack.

The median model anomaly field (median model mi-
nus gridded SWE dataset) (Fig. 6c) reveals that models
tend to underestimate SWE over much of the midlati-
tudes of NA, particularly over eastern Canada. Over
western North America, the anomaly pattern is most
likely related to the smoothed representation of topog-
raphy in the models, which results in underestimation
of SWE at higher elevations, and overestimation in ad-
jacent lower-elevation areas. For example, Liang et al.
(2004) found reduced biases in model precipitation pat-
terns over the western United States in a regional
model compared to an AGCM due to improved repre-
sentation of topography. Over high latitudes, where our
confidence in the gridded SWE estimates is lower, the
models exhibit a tendency to overestimate SWE. Re-
sults of the same analysis using maximum monthly
SWE (not shown) rather than mean seasonal SWE are
almost identical. The underestimation occurs largely in
spring (cf. Fig. 1a).

Interannual variability in model simulations is de-
picted spatially in a similar fashion. For each model, at
each grid cell, the IQR of seasonal mean SWE for all
simulation years is calculated; then, the median IQR
value of all models is calculated. Observations indicate,
again not surprisingly, that interannual variability tends
to be highest over the snowiest regions (Fig. 7a). The
models capture the general spatial pattern of variability
reasonably well, but miss many of the smaller-scale fea-
tures (Fig. 7b). As measured by IQR, models tend to
underestimate interannual variability of the seasonal
mean snowpack (Fig. 7c) almost everywhere, particu-
larly the deeper snowpacks of the high elevation west
and eastern Canada. Note that using standard deviation
rather than IQR provides different results (not shown).
Although we choose to use IQR for this figure because
nonparametric statistics are generally more robust than
parametric statistics, the results regarding interannual
variability are considered less robust as they depend on
the metric.

Between-model variability is characterized using the
IQR of model values of seasonal mean SWE at each
grid point. This is calculated by taking, at each grid
point, the mean seasonal snowpack for each model, and
calculating the IQR value over all models. Figure 8a
shows that the largest between-model variability is
found over the regions with the deepest snowpacks,
where interannual variability is also highest: the moun-
tainous west and eastern Canada. The minimum and
maximum seasonal mean SWE fields are also shown

FIG. 6. Seasonal (Oct–Jun) mean SWE (mm) regridded to 2.5°
� 2.5° lat–lon resolution. (a) Observed, (b) median model, and (c)
model anomaly. Regridding was done using linear interpolation,
and results are plotted on an Albers equal area projection using a
logarithmic scale for contour lines.
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FIG. 7. Interannual variability of seasonal (Oct–Jun) mean SWE
(mm). The IQR of seasonal mean SWE regridded to 2.5° � 2.5°
lat–lon resolution. (a) Observed, (b) median model, and (c) model
anomaly. Regridding was done using linear interpolation, and re-
sults are plotted on an Albers equal area projection using a loga-
rithmic scale for contour lines.

FIG. 8. Between-model variability of seasonal (Oct–Jun) mean
SWE (mm) regridded to 2.5° � 2.5° lat–lon resolution. (a) IQR of
seasonal mean SWE between models; (b) minimum seasonal mean
SWE; and (c) maximum seasonal mean SWE. Regridding was done
using linear interpolation, and results are plotted on an Albers
equal area projection using a logarithmic scale for contour lines.

OCTOBER 2005 F R E I E T A L . 689

Fig 7 8 live 4/C



(Figs. 8b and 8c). All models maintain a mean seasonal
snowpack of at least 1 mm of SWE in the Rocky Moun-
tains as far south as �42°N latitude, and the minimum
snowpack field has the snow line well to the north of
the observed snow line. This is a significant underesti-
mation of the actual snowpack (cf. Fig. 8b to Fig. 6a).
The maximum model field (Fig. 8c), on the other hand,
maintains a seasonal mean snowpack of at least 1 mm
of SWE south of 35°N latitude across the continent, and
south of 30°N in northeastern Mexico. This represents
a significant overestimation of the seasonal mean SWE
field, as the observed mean seasonal snowpack is
greater than 1 mm of SWE only as far south as �40°N
except in the Rocky Mountains where the 1-mm SWE
line drops to �35°N (Fig. 6a). The maximum field in-
dicates that at least one model has unusually large
anomalies over the Pacific coastal mountains between
�50° and 65°N latitude (this corresponds to model
number 7, whose results in some of the figures are omit-
ted due to this unusually large anomaly).

7. Regional-scale analysis

In this section we examine the seasonal climatic
cycles over four regions shown in Fig. 9: the southern
plains, northern plains, Great Lakes, and Maritimes.
The rationale for choosing these regions is discussed in
section 4c. The spatial domains of the regions, and a
comparison of their mean seasonal (October through
April; there is typically little snow cover in these re-
gions between May and September) climates, are pro-
vided in Table 2. Note that the discussion about pre-
cipitation is based on the Willmott and Matsuura (2001)
dataset, which is likely to include underestimates of
precipitation gauge corrections (Adam and Letten-
maier 2003).

We evaluate the annual cycles of SWE, SWE accu-
mulation, SCA, precipitation, and temperature in each
region (Figs. 10a–d). SWE accumulation is defined as
the monthly mean SWE value minus the previous
month’s value. It is evident from the figure that over all
regions the timing of the seasonal cycles is captured
reasonably well, but that the spread of model results
can be large. While the median model result is close to
observations, a large variation between models is ap-
parent. As with continental-scale results reported in
section 5, no temporal correlations between observed
and modeled SWE in these regions are found. There-
fore, this report focuses on climatology, and no time
series are shown.

The plains are much drier than the other two regions.
The southern plains is relatively warm and dry, with a
mean seasonal snowpack of only 7-mm SWE, a peak
snowpack in January and February of �20 mm, and a
mean seasonal snow covered area of less than 30%,
making it the least snowy of the four regions. The
northern plains are even drier, receiving only 140 mm
of precipitation during the winter season compared to
�200 mm in the southern plains. However, because of
lower temperatures, a larger snowpack is typically
maintained in the northern plains.

Over the southern plains, SCA peaks in January at

FIG. 9. Boundaries of regions examined in regional analysis in
section 7. Regions are referred to in the text as follows: southern
plains (SP); northern plains (NP); Great Lakes (GL); and Mari-
time (MT). Boundaries are defined in Table 2.

TABLE 2. Summary of mean seasonal (Oct–Apr) climate conditions in the four regions. Columns show the region name; region
boundary; seasonal mean SWE; month of maximum mean SWE; mean seasonal snow-covered area; mean seasonal total precipitation;
and mean seasonal temperature. Values calculated using the AMIP-2 time domain from 1979 through 1995. Snow values calculated
from Brown et al. (2003); temperature and precipitation values calculated from Willmott and Matsuura (2001).

Region
Region boundaries

lat (°N)/lon (°E) SWE (mm)
Month of
max SWE SCA (%)

Precipitation
(mm)

Temperature
(°C)

1) Southern Plains 37–47/255–265 7 Jan 29 198 1.8
2) Northern Plains 47–55/250–265 23 Feb 64 140 �6.2
3) Great Lakes 37–47/265–285 16 Feb 31 485 1.9
4) Maritimes 40–50/285–300 43 Mar 56 594 �3.2
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FIG. 10. (a) Regional monthly and seasonal climatology for southern plains region. Observed values are indicated with asterisks.
Box-and-whisker plots indicate model results from 18 AMIP-2 AGCMs, interpreted as follows: middle line shows the median value; top
and bottom of box show the upper and lower quartiles (i.e., 75th and 25th percentile values); and whiskers show the minimum and
maximum model values. Variables shown are SWE, SWE accumulation, SCA, precipitation, and temperature. Snow variables taken
from Brown et al. (2003); temperature and precipitation taken from Willmott and Matsuura (2001). (b) Same as (a) except northern
plains region. (c). Same as (a) except Great Lakes region. (d) Same as (a) except Maritime region.
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60%, and the snowpack has typically ablated by early
April (Fig. 10a). Models exhibit a wet bias, with a great
deal of between-model variability. No significant tem-
perature bias is observed, and between-model variabil-
ity in temperature is modest. Biases in SWE and SCA
are minimal. While between-model variability in SWE
is small, between-model variability in SCA is signifi-
cant.

In the northern plains, biases in precipitation rates
and early season temperatures are apparent (Fig. 10b).
Models have a warm bias of 5°C between November
and February, resulting in a seasonal mean warm bias
of 2°C. Yet, 25% of models have seasonal mean cold
biases. Only small biases, but significant between-
model variability, are observed in SWE and SCA.

The Great Lakes and Maritime regions receive abun-
dant precipitation: �500 and �600 mm per season, re-
spectively (Figs. 10c and 10d). The Great Lakes region
experiences relatively warm temperatures (comparable
to those observed in the southern plains). As a result of
being wet and warm, the mean snowpack in the Great
Lakes is comparable to the northern plains. As over the
plains, model simulations vary significantly. For ex-
ample, while 25% of the models maintain a mean
monthly snowpack as high as 5–40 mm well into April,
other models have peak midwinter monthly values as
low as 5 mm.

The Maritime region, in contrast, is relatively cold
(only the northern plains are colder) and wet (no other
region receives as much precipitation). The mean sea-
sonal snowpack of �40 mm SWE and peak snowpack
of 100 mm SWE in March are almost double the values
found in any other region. As in the other regions, be-
tween-model variability is significant, resulting in peak
monthly SWE values ranging from �50 to 200 mm.

Seasonal (October–April) mean values of SWE,
SCA, total precipitation, and temperature from obser-
vations and from each model are shown in Figs. 11a–d.
“Seasonal” is defined differently than in earlier sections
of this article because over these regions the snow sea-
son is shorter than over higher latitudes. Perusal of
these bar plots reveals that a simple diagnosis of prob-
lems from a suite of models is impossible. For example,
in one region one model may be very wet and warm, yet
only moderately underestimate SWE and actually over-

estimate SCA; another model might be cold and dry,
yet produce similar mean SWE and SCA values in the
same region!

8. Discussion and conclusions

The large-scale spatial distribution of observed snow
mass, or SWE, over North America reflects the inter-
action of a number of influences: proximity to moisture
sources, orography, predominant storm-track locations,
and the location of the 0°C isotherm. The largest SWE
values are found over the western cordillera, with a
secondary maximum over eastern Canada. SWE values
are typically low over much of the continental interior,
with a well-defined band of higher SWE values over the
boreal forest. The total estimated snow mass integrated
over the entire study domain (between 20° and 70°N
latitude and 200° and 300°E longitude), which covers
most of North America but excludes Greenland and
sections of the Arctic archipelago, peaks in March at
�1500 km3. The snow covered area (SCA) peaks at
around 70% in January.

Most AMIP-2 models simulate the seasonal timing
and the relative spatial patterns of continental-scale
SWE reasonably well. Analyses of continental- to re-
gional-scale variations show that simulated SWE values
typically peak in the appropriate month. In most mod-
els, the deepest snowpacks are found over the western
cordillera and over eastern Canada, just as indicated by
observations. The median model result, however, tends
to overestimate the rate of snow ablation during spring.
This is likely related to the exclusion of subgrid-scale
treatments for terrain and land cover, and to the diffi-
culty of modeling all the subgrid-scale processes that
contribute to snow ablation. However, a detailed evalu-
ation of this problem is beyond the scope of this analy-
sis.

Significant between-model variability is found in ev-
ery aspect of the simulations. On the continental scale,
the peak monthly snow mass integrated over the North
American continent in AMIP-2 models varies between
�50% of the observed value of �1500 km3. The vol-
ume of water in the snowpack, as well as the magnitude
of model errors, is significant from the perspective of
the large-scale water balance. For example, the mean

→

FIG. 11. (a) Regional (Oct–Apr) seasonal climatology for southern plains region. Observed values are indicated by the leftmost bar.
Each numbered bar corresponds to one model, and model numbers correspond to those shown in Table 1. Temperature values for
model 7 are omitted because they were unavailable at the time of this writing. “Seasonal” is defined differently than in earlier sections
of this article because over these regions the snow season is shorter than over higher latitudes. Snow variables taken from Brown et
al. (2003); temperature and precipitation taken from Willmott and Matsuura (2001). (b) Same as (a) except northern plains. (c) Same
as (a) except Great Lakes. (d) Same as (a) except Maritime.
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total precipitation over North America is �18 000 km3

yr�1; the mean total runoff from North America to the
oceans is �8000 km3 yr�1; the global volume of water in
all rivers is �2000 km3 yr�1; the total volume of water
incorporated in the earth’s biota is �1000 km3 yr�1; and
the average annual availability of freshwater for the
United States and Canada is �3000 km3 yr�1 in each
country (Gleick 2000). Clearly, adequate simulation of
the continental-scale hydrologic cycle requires a rea-
sonably accurate depiction of the magnitude and timing
of snow accumulation and ablation.

Over smaller regions, similar between-model vari-
ability is observed for SWE, as well as for other vari-
ables including SCA, temperature, and precipitation. It
is hoped that the bar plots showing individual model
results (Fig. 11) will be helpful to some of the modeling
groups. Most models exhibit biases in one area or an-
other.

On the other hand, it is of interest that the median
result from the suite of models tends to do a better job
of estimating climatological mean features than any in-
dividual model. These two characteristics of modeled
climate—large between-model variability, and the ten-
dency for the median or mean of a suite of models to
better approximate observed climate than any indi-
vidual model—has been found for many climatological
variables and suggests that experiments using ensemble
results from several models might be valuable. The rea-
sons for this have not been fully explained, but see
Krishnamurti et al. (2000), Kharin and Zwiers (2002),
and Palmer et al. (2004) for further discussion.

Year-to-year variations in large-scale SWE appear to
be only weakly correlated to observed variations. Such
weak correlations, which were found for SCA as well
(Frei et al. 2003; Frei and Robinson 1998), indicate that
in AMIP-2 models, sea surface temperatures, which are
the primary boundary conditions imposed on models in
the AMIP experiments, are not significant factors in
determining the interannual variations in the large-
scale snowpack. These results are consistent with other
studies that show that the potential predictability of
midlatitude climate is poor in AGCM experiments
driven by SST boundary conditions. In AMIP-1 models,
potential predictability of midlatitude climate was gen-
erally poor (Zwiers 1995). More recent work corrobo-
rates that predictability of precipitation over midlati-
tude Northern Hemisphere landmasses is poor during
both winter (Compo and Sardeshmukh 2004) and sum-
mer (Kang et al. 2004). It is likely that the correct simu-
lation of circulation patterns requires the inclusion of
feedbacks between the atmosphere and ocean. For ex-
ample, Liu and Wu (2004) show that the atmospheric

response to winter SSTs depends on the inclusion of a
coupled atmosphere–ocean model.

The results of this study have implications for simu-
lations of the large-scale hydrologic cycle. Over much
of North America a significant portion of annual pre-
cipitation falls in frozen form, and the snowpack plays
a major role in hydrological processes. Even in many
arid areas that do not receive much snow, such as parts
of the western United States, a significant portion of
river water originates as snowfall at higher elevations.
The magnitude and timing of the seasonal snowpack
therefore have great impacts on local and regional hy-
drology, affecting riparian ecology, wetlands, nutrient
cycling, water quality, as well as water supply for hu-
man consumption. As GCMs are increasingly being
used to generate scenarios of climate change at regional
to global scales, and are including more detailed sub-
models for biospheric processes (with particular re-
gards to carbon cycling), the choice of model (or mod-
els) may be a critical factor in determining the types
and magnitudes of expected impacts, and may influence
subsequent policy decisions.
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